Exponents Units Portfolio Learning Statement

Seeing as the scans of my work down below may not be large enough to see, here is the sharing link to a google documents folder containing all of these photo scans.

Beautiful examples (Your assignment work here! Evidence)	Amazing Narratives	How I feel about my preparedness for:
Exponent Rules Photo 1-3: Dave's MATH 3 - Exponents Review First \& Last Name: Rayna Chale z Activity 1 (Warm-Up) Give the answer to each of the following in product and base ${ }^{\text {(exponenty }}$ form \qquad \qquad \qquad \qquad \qquad Activity 2 The first two are done for you \qquad \qquad 3. $\left(3^{2}\right)^{2}=$ 4. $\left(2^{2}\right)^{3}=$ 5. $\left.\left(L^{2}\right)^{2}\right)=$ 6. $\left(0^{12}\right)^{4}=4$ a. What do you notice? What patterns can you find? Ive noticed that As lespy t brenk dewn \qquad \qquad $\# 5$ and $\# 4 \cdot M \sqrt{a^{n}}$ or $a^{2} \sqrt{m}$ $\begin{aligned} & \text { Try these } \\ & \text { i. }\left(d^{100}\right)^{3}=d^{100} \cdot d^{100} \cdot d^{100}=d^{300} \\ & \text { ii. }\left(m^{12}\right)^{5}=m^{12} \cdot m^{12} \cdot m^{12} \cdot m^{12} \cdot m^{12}= \\ & \text { iii. }\left(c^{12}\right)^{25}=C^{1 / 2 / 5}=c^{1 / 5} \end{aligned}$ Activity 3 \qquad	The Exponents Review packet [shown in photos 1-3] wasn't difficult for me. Overall, I moved through the whole Exponents Rules unit pretty smoothly, however, this first, Exponent Review packet was easier than it all. I finished the packet in under 20 minutes--which, surprisingly, is fast for me. I'm a slow worker)--however I spent more time on activities 4 and 5, as they came at me with more difficulty. Not to say that it was too difficult, but if I had to pluck a weakness out of this packet that I have with exponents, It would be the content covered in these activities. The last 2 columns in the Exponents Rules and Practice packet were pretty difficult for me and took me some time and aid to complete them. Working on every other problem in this packet, I solved many of them incorrectly at first and had to learn from my mistakes by resolving them. However, I learned how to do many of the problems I previously hadn't grasped--though sadly, not all of them. I never learned how to solve problems \#26, \#29 and \#37. There was still unclarity there after I finished the packer, however moving through the rest of this unit afterwards, I've gotten practice with exponents and am now able to solve these problems. The last packet in the Exponent Rules portion of this unit, "Evaluating Exponential Equations" [shown in photo 4], was a bit confusing for me, and honestly, still is. I didn't understand how I could apply the knowledge we have gained from the other packets to prove whether Henrie or Henrietta made the correct conclusion. The content was still pretty new to me and I, personally, hadn't gotten enough practice with working with exponential equations to solve these and problems. I could have reached out to my teachers for some extra help on this (and other) packets, instead of only asking me peers for help. I think that for this problem, asking my peers for help only steered me in the wrong direction	

Forms of Exponential Equations

Photos 11-12:

This far into this unit, things were flowing fairly smoothly, however, I hit a boulder when I reached this Forms of Exponential Equations problem [shown in photos 11-12]. One issue is that I didn't have enough time to work on it, so there was a limit to how far I could more through the problem. We had about 15 minutes total of worktime in class, but after that, I only had about 5 more minutes to work on it at home before I fell asleep while working on it, The following day when we reviewed it, however, it made total sense and I practically slapped my head in having not

